There is an integer array nums
sorted in ascending order (with distinct values).
Prior to being passed to your function, nums
is possibly rotated at an unknown pivot index k
(1 <= k < nums.length
) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(0-indexed). For example, [0,1,2,4,5,6,7]
might be rotated at pivot index 3
and become [4,5,6,7,0,1,2]
.
Given the array nums
after the possible rotation and an integer target
, return the index of target
if it is in nums
, or -1
if it is not in nums
.
You must write an algorithm with O(log n)
runtime complexity.
有一個遞增的Number陣列,裡面的值不會重複。
此陣列在成為參數前,會先被不特定的樞紐k給翻轉。(1 <= k < nums.length)
所以最終傳進的參數會是[nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(0-indexed).
[0,1,2,4,5,6,7]
如果配上參數k,則會變成 [4,5,6,7,0,1,2]
.
最終要回傳targer在陣列的參數位置。
#這題必須使用O(log n)完成
提到log n 以及有序或部分有序,我們先想到binary search。想辦法捨棄一半的數據
- 為了做Binary Search,我們先定義right跟left。
- 準備一個迴圈,設定left <= right 才運作
- 找出中間值,如果中間值為target則return
- 如果左邊是有序的,判斷target是否在此range裡面,假如是,right改成mid – 1。假如不是,left改成mid + 1
- 如果右邊是有序的,判斷target是否在此range裡面,假如是,right改成mid – 1。假如不是,left改成mid + 1
- 如果都沒有在裡面,return -1
/**
* @param {number[]} nums
* @param {number} target
* @return {number}
*/
var search = function(nums, target) {
let left = 0;
let right = nums.length-1;
while(left <= right){
let mid = Math.floor((left + right)/2);
if(nums[mid] == target){
return mid
}
// left sorted
if(nums[left] <= nums[mid]){
// target not in left
if(target < nums[left] || target > nums[mid]){
left = mid + 1;
}else{
right = mid - 1;
}
}else{
// target not in right
if(target > nums[right] || target < nums[mid]){
right = mid - 1;
}else{
left = mid + 1;
}
}
}
return -1
};